Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(6): 1558-1572, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38305728

RESUMO

In this work, positively charged N-carbazoleacetic acid decorated CuxO nanoparticles (CuxO-CAA NPs) as novel biocompatible nanozymes have been successfully prepared through a one-step hydrothermal method. CuxO-CAA can serve as a self-cascading platform through effective GSH-OXD-like and POD-like activities, and the former can induce continuous generation of H2O2 through the catalytic oxidation of overexpressed GSH in the bacterial infection microenvironment, which in turn acts as a substrate for the latter to yield ˙OH via Fenton-like reaction, without introducing exogenous H2O2. Upon NIR irradiation, CuxO-CAA NPs possess a high photothermal conversion effect, which can further improve the enzymatic activity for increasing the production rate of H2O2 and ˙OH. Besides, the photodynamic performance of CuxO-CAA NPs can produce 1O2. The generated ROS and hyperthermia have synergetic effects on bacterial mortality. More importantly, CuxO-CAA NPs are more stable and biosafe than Cu2O, and can generate electrostatic adsorption with negatively charged bacterial cell membranes and accelerate bacterial death. Antibacterial results demonstrate that CuxO-CAA NPs are lethal against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) through destroying the bacterial membrane and disrupting the bacterial biofilm formation. MRSA-infected animal wound models show that CuxO-CAA NPs can efficiently promote wound healing without causing toxicity to the organism.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Animais , Peróxido de Hidrogênio , Fototerapia , Nanopartículas/química , Infecções Bacterianas/tratamento farmacológico , Escherichia coli , Antibacterianos/química
2.
Bioorg Chem ; 144: 107141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244381

RESUMO

In this work, we rationally designed and synthesized two novel triazene-amonafide derivatives 2-(2-(diisopropylamino)ethyl)-5-(3,3-dimethyltriaz-1-en-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (D-11) and 5-(3,3-diethyltriaz-1-en-1-yl)-2-(2-(diisopropylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (D-12) as potential antitumor agents. The DNA damage induced by the intercalation mode of D-11 (D-12) towards DNA was electrochemically detected through the construction of efficient biosensors. The consecutive processes of reversible redox of naphthylimide ring and irreversible oxidation of triazene moiety were elucidated on the surface of glassy carbon electrode (GCE) by CV, SWV, and DPV methods. Electrochemical biosensors were obtained through the immobilization of ctDNA, G-quadruplexes, poly(dG), and poly(dA), respectively, on the clean surface of GCE. After the incubation of biosensors with D-11 or D-12, the peaks of dGuo and dAdo decreased prominently, and the peak of 8-oxoGua appeared at +0.50 V, suggesting that the interaction between D-11 (D-12) and DNA could result in the oxidative damage of guanine. Unexpected, the as-prepared DNA biosensor possessed satisfactory anti-interference property and good practicability in real samples. UV-vis and fluorescence spectra, and gel electrophoresis assays were employed to further confirm the intercalation mode of D-11 (D-12) towards DNA base pairs. Moreover, D-11 was proved to exhibit stronger anti-proliferation activity than mitionafide and amonafide against both A549 and HeLa cell lines.


Assuntos
Adenina , Antineoplásicos , DNA , Organofosfonatos , Humanos , Células HeLa , DNA/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Carbono/química , Triazenos , Estresse Oxidativo , Isoquinolinas
3.
Biomater Sci ; 12(2): 425-439, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38050470

RESUMO

In this work, we successfully constructed Mn-coordinated nitrogen-carbon nanoparticles (Mn-N-C NPs) exhibiting multienzyme-like activities. In a bacterial infectious microenvironment, the POD-like and OXD-like activities of Mn-N-C NPs could synergistically trigger the generation of ROS (˙OH and O2˙-), causing oxidative damage to the bacterial cell membrane for killing bacteria. Alternatively, in neutral or weak alkaline normal tissues, the excessive O2˙- could be converted into O2 and H2O2via the SOD-like ability of Mn-N-C NPs, and subsequently their CAT-like activity catalyzed excess H2O2 into H2O and O2 for protecting normal cells through the antioxidant defense. Mn-N-C NPs also possessed a good NIR-photothermal performance, which could enhance their POD-like and OXD-like activities. Furthermore, Mn-N-C NPs could facilitate the GSH oxidation process and disrupt the intrinsic balance in the bacterial protection microenvironment with the assistance of H2O2, which is beneficial for rapid bacterial death. Undoubtedly, the Mn-N-C NPs + H2O2 system showed the highest antibacterial activity when irradiated with an 808 nm laser, destroying the bacterial membrane and causing the efflux of proteins. Moreover, the Mn-N-C NPs + H2O2 system was immune to the development of bacterial resistance and could efficiently disrupt the formation of a bacterial biofilm with negligible cytotoxicity and low hemolysis ratio. Finally, Mn-N-C NPs exhibited an excellent antibacterial performance in vivo and could accelerate wound healing without cellular inflammation production. Therefore, due to their significant therapeutic effects, Mn-N-C NPs show great potential in fighting antibiotic-resistant bacteria.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Peróxido de Hidrogênio , Antioxidantes , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
J Pharm Biomed Anal ; 231: 115410, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087773

RESUMO

In this work, novel potential anthraquinone-temozolomide (TMZ) antitumor hybrids N-(2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)amino)ethyl)-3-methyl-4-oxo-3,4-dihydroimidazo [5, 1-d][1,2,3,5]tetrazine-8-carboxamide (C-1) and 2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)amino) ethyl-3-methyl-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carboxylate (C-9) were designed and synthesized successfully. The electrochemical behaviors of C-1 (C-9) involved the reversible processes of 9,10-anthraquinone ring, the irreversible reduction and oxidation processes of TMZ ring. Electrochemical biosensors were constructed with ctDNA, poly (dG) and poly (dA) modifying the surface of glassy carbon electrode (GCE) to evaluate the DNA oxidative damage caused by the interaction of C-1 (C-9) with DNA. Anthracycline skeleton and TMZ ring in C-1 (C-9) could exhibit bifunctional effects with both intercalating and alkylation modes toward DNA strands. The DNA biosensor had good practicability in mouse serum. The results of gel electrophoresis further demonstrated that C-1 (C-9) could effectively intercalated into ctDNA and disrupt plasmid conformation. Finally, anthraquinone-TMZ hybrid C-1 possessed high cytotoxicity toward A549 and GL261 cells, which could be a novel and optimal candidate for the clinic antitumor treatment.


Assuntos
Antraquinonas , Técnicas Biossensoriais , Animais , Camundongos , Temozolomida , Carbono , DNA/química , Eletrodos , Técnicas Eletroquímicas/métodos
5.
Anal Bioanal Chem ; 415(12): 2249-2260, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36920495

RESUMO

In this work, we design and synthesize 2,2'-(7,9-dimethyl-2,4,6,8-tetraoxo-6,7,8,9-tetrahydropyrimido[5,4-g]pteridine-1,3(2H,4H)-diyl)bis(N,N-bis(2-chloroethyl)acetamide) (PT-MCA) as a novel DNA intercalator and potential antitumor agent. Electrochemical analysis reveals the redox process of PT-MCA on the electrode surface. The bioelectrochemical sensors are obtained by modifying the surface of GCE with calf thymus DNA (ctDNA), poly (dG), poly (dA), and G-quadruplex, respectively. The DNA oxidative damage induced by PT-MCA is investigated by comparing the peak intensity change of dGuo and dAdo and monitoring the peaks of the oxidation products of guanine and/or adenine (8-oxoGua and/or 2,8-oxoAde). UV-vis absorption and fluorescence spectra and gel electrophoresis are further employed to understand the intercalation of PT-MCA into DNA base pairs. Moreover, PT-MCA is proved to exhibit stronger anti-proliferation activity than mitoxantrone against both 4T1 and B16-F10 cancer cells. At last, the oxidative damage of PT-MCA toward ctDNA is not interfered by the coexistence of ions and also can be detected in real serums.


Assuntos
Antineoplásicos , Pteridinas , DNA/genética , Antineoplásicos/farmacologia , Adenina , Estresse Oxidativo , Dano ao DNA
6.
J Mater Chem B ; 11(8): 1760-1772, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723366

RESUMO

In this work, novel cuprous oxide-demethyleneberberine (Cu2O-DMB) nanomaterials are successfully synthesized for photoresponsive-enhanced enzymatic synergistic antibacterial therapy under near-infrared (NIR) irradiation (808 nm). Cu2O-DMB has a spherical morphology with a smaller nanosize and positive ζ potential, can trap bacteria through electrostatic interactions resulting in a targeting function. Cu2O-DMB nanospheres show both oxidase-like and peroxidase-like activities, and serve as a self-cascade platform, which can deplete high concentrations of GSH to produce O2˙- and H2O2, then H2O2 is transformed into ˙OH, without introducing exogenous H2O2. At the same time, Cu2O-DMB nanospheres become photoresponsive, producing 1O2 and having an efficient photothermal conversion effect upon NIR irradiation. The proposed mechanism is that the generated ROS (O2˙-, ˙OH and 1O2) and hyperthermia can have synergetic effects for killing bacteria. Moreover, hyperthermia is not only beneficial for destroying bacteria, but also effectively enhances the efficiency of ˙OH production and accelerates GSH oxidation. Upon NIR irradiation, Cu2O-DMB nanospheres exhibit excellent antibacterial ability against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) with low cytotoxicity and bare bacterial resistance, destroy the bacterial membrane causing an efflux of proteins and disrupt the bacterial biofilm formation. Animal experiments show that the Cu2O-DMB + NIR group can efficiently treat MRSA infection and promote wound healing. These results suggest that Cu2O-DMB nanospheres are effective materials for combating bacterial infections highly efficiently and to aid the development of photoresponsive enzymatic synergistic antibacterial therapy.


Assuntos
Hipertermia Induzida , Staphylococcus aureus Resistente à Meticilina , Nanosferas , Animais , Staphylococcus aureus , Peróxido de Hidrogênio , Antibacterianos , Escherichia coli
7.
ACS Appl Mater Interfaces ; 14(16): 18170-18181, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35426296

RESUMO

Pathogenic bacteria infections have posed a threat to human health worldwide. Nanomaterials with natural enzymatic activity provide an opportunity for the development of new antibacterial pathways. We successfully constructed iron phosphate nanozyme-hydrogel (FePO4-HG) with the traits of positive charge and macropores. Interestingly, FePO4-HG displayed not only peroxidase-like activity under acidic bacterial infectious microenvironment but also superoxide dismutase-catalase-like synergistic effects in neutral or weak alkaline conditions, thus protecting normal tissues from the peroxidase-like protocol with exogenous H2O2 damage. Furthermore, the positive charge and macropore structure of FePO4-HG could capture and restrict bacteria in the range of ROS destruction. Obviously, FePO4-HG exhibited excellent antibacterial ability against MRSA and AREC with the assistance of H2O2. Significantly, the FePO4-HG + H2O2 system could efficiently disrupt the bacterial biofilm formation and facilitate the glutathione oxidation process to rapid bacterial death with low cytotoxicity. Moreover, FePO4-HG was unsusceptible to bacterial resistance development in MRSA. Animal experiments showed that the FePO4-HG + H2O2 group could efficiently eliminate the MRSA infection and present excellent wound healing without inflammation and tissue adhesions. With further development and optimization, FePO4-HG has great potential as a new class of antibacterial agents to fight antibiotic-resistant pathogens.


Assuntos
Infecções Bacterianas , Hidrogéis , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes , Bactérias/metabolismo , Hidrogéis/farmacologia , Peróxido de Hidrogênio , Ferro , Peroxidase/química , Fosfatos , Esterilização
8.
Adv Healthc Mater ; 11(1): e2101698, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549554

RESUMO

Bacterial infections have become major threats to public health all over the world. With the emergence of antibiotic resistance, it is urgent to develop novel antimicrobial materials to efficiently overcome drug resistance with high bactericidal activity. In this work, UiO-66-NH-CO-MoS2 nanocomposites (UNMS NCs) are constructed through the amidation reaction. The UNMS NCs are positively charged which is beneficial for capturing and restricting bacteria. Significantly, UNMS NCs possess a synergistic bactericidal efficiency based on near-infrared irradiation (808 nm) regulated combination of photothermal, photodynamic, and peroxidase-like enzymatic activities. Both the photodynamic property and nanozymatic activity of UNMS NCs can lead to the generation of reactive oxygen species. The UNMS NCs show high catalytic activity in a wide pH range and exhibit excellent antibacterial ability against ampicillin-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus with negligible cytotoxicity. Interestingly, due to the 808 nm irradiation-induced hyperthermia in the presence of UNMS NCs, the glutathione oxidation process can be accelerated, resulting in bacterial death more easily. Mice wound models are established to further manifest that UNMS NCs can promote wound healing with good biosafety in living systems.


Assuntos
Antibacterianos , Infecções Bacterianas , Farmacorresistência Bacteriana , Estruturas Metalorgânicas , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Molibdênio , Peroxidase , Peroxidases , Ácidos Ftálicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...